
M Rajasekhara Babu, P venkata Krishna, Dinesh Kumar, and V.Shravan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1200-1202

1200 | P a g e

Abstract: In recent years with the advent of programming

techniques, parallel programming consumes less execution

time as compared to sequential. The odd-even merge sort

algorithm was developed by K.E. Batcher [1]. It takes two

sorted array and merge them into a single sorted array. In

this paper we have implemented this algorithm in three

different modules and compared the performance of

sequential with parallel. Parallelism is achieved by using

#pragma parallel in openmp, using message passing in mpi

and by using threads in concurrent java.

Keyword: odd-even merge sort, parallelism, openmp,

mpi, concurrent java

I. INTRODUCTION

Sorting is a method which arranges the list of elements into a

particular order. sorting has two different meanings ordering

and categorizing, ordering means to order the list of same

items and categorizing means grouping and labeling the same

type of items[2]. sorting is used in other algorithms that

require sorted list to work efficiently. The odd-even merge

sort algorithm was developed by K.E. Batcher [1]. Odd even

merge sort algorithm can be used for the construction of a

systematic sorting network. To construct a systematic sorting

network, it is necessary to construct a comparison network

that can sort any odd-even sequence. The main idea of this

algorithm is that first it sorts the odd position list and the even

position list, finally it combines the two sorted list into a

single sorted sequence by using a merge algorithm.

In this paper we tried to parallelize this sorting algorithm into

three different modules that is openmp, mpi and concurrent

java and compared the results of sequence implementation

with parallel.

II. ODD-EVEN MERGE SORT:
Algorithm for odd- even merge sort

 Input: sequence t0, ..., ti-1 of length i>1 whose two

halves t0, ..., ti/2-1 and ti/2, ..., t i-1 are sorted (i a multiple of 2)

Output: sorted sequence

Method:

Begin:

1. Accept the length of the array (in multiples of 2)

2. divide the array into two halves one of even sequence and

other of odd sequence

3. for each sequence use parallel partitions

 Do

 Call partition (array,start,end)

 End

4. merge two sorted arrays. Merge(array1,array2,size)

5. End

Partition()

Begin

mergesort()

end

Merge()

Begin

compare two arrays and merge

End

Initially we accept a single array from the user and then split

into two, one of odd sequence and other of even sequence.

Then each sequence is sorted in parallel by using merge sort,

and then we get two array which are sorted. The two arrays are

merged and sorted into a single array.

PERFORMANCE ANALYSIS OF ODD-EVEN MERGE SORT BY USING

OPENMP, MPI AND CONCURRENT JAVA

M Rajasekhara Babu, P venkata Krishna, Dinesh Kumar, and V.Shravan

School of Computing Sceince and Engineering, VIT University, Vellore-

632014,T.N,India

M Rajasekhara Babu, P venkata Krishna, Dinesh Kumar, and V.Shravan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1200-1202

1201 | P a g e

II. FLOW CHART

Fig1: flow chart for parallel odd-even merge sort

IV. METHODOLOGY

A. Openmp:

Partition(): This method is used for partitioning the odd and

even array and then it call the merge sort for each partition.

Merge(): This method is used to combine the two sorted array

that is even and odd and form the final single sorted array.

#pragma omp parallel section: independent sections can be

parallelized by using this method.

 # pragma omp section: It used to divide the section among the

threads.

#pragma omp parallel for: The for loop can be parallelized by

using this method.

B. MPI:

Read_list(): process 0 reads the list from stdin and scatters it to

the other processes.

Partition(): To partition the array of add and even array and to

sort using merge sort.

Merge():This method is used to combine the two sorted array

that is even and odd and form the final single sorted array.

MPI_Init(): This method is used to initialize the MPI

execution environment. This is mandatory method for every

MPI program. It must be called only once in a program and

before any other method is called.

MPI_Comm_size(): It gives the total number of processors

available.

MPI_Comm_rank(): It assigns a unique identification number

for each processor in use.

MPI_Finalize(): This is the last method to be called by any

MPI program .

MPI_Bcast(): This method broadcast a message from the

process which have rank “root” to remaining processes.

MPI_Scatter(): It can Distribute distinct messages to all other

processes in a group from a single source

MPI_Send(): It is basic blocking send operation. If application

buffer of sending task is free then this method returns.

C. Concurent Java:

Partition(): This method is used for partitioning the odd and

even array and then it call the merge sort for each partition.

Merge(): This method is used to combine the two sorted array

that is even and odd and form the final single sorted array.

Run(): When an object is created the interface Runnable is

called automatically to create a thread, when the thread is

started it calls the run method

Start(): This method start the execution of thread.

Synchronized(): This method can not allow two invocations

of the synchronized methods on the same object to interleave.

V. RESULTS

A. OpenMP :

Table 1:Execution time for serial and parallel in openmp

Graph :

Graph 1:execution time(ms) for different data set

The STM in the graph 1 shows the serial execution time and

parallel shows the parallel execution time.

x-axis show the different data sizes and y-axis show the time

in milli-sec.

M Rajasekhara Babu, P venkata Krishna, Dinesh Kumar, and V.Shravan / International Journal of

Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 1, Issue 3, pp.1200-1202

1202 | P a g e

B. MPI :

Table 2: parallel execution time(sec) for different processors

in mpi

Graph :

Graph 2: Time taken to execute different number of data sizes

The p2 in the graph 2 shows the two number of processors in

the same way p4 and p6 shows four and six number of
processors respectively. The x-axis shows the data size and y-

axis shows the execution time in seconds

C. Concurrent JAVA:

Data Set Serial

Time(ms)

Parallel

Time(ms)

4 4 5

8 7 6

16 13 8

32 20 12

Table 3: Execution time for serial and parallel in concurrent

java

Graph :

Graph 3: Time taken to execute different number of data sizes

The STM in the graph 3 represents the serial execution time

and PTM represents the parallel execution time. x-axis shows

the different data sizes and the y-axis shows the time in milli-

seconds.

VI. CONCLUSINONS

In this study we compare execution time for serial and parallel

in different modules like MPI ,Concurrent Java, Openmp.

When we analyze the parallel code, The execution time for

parallel code decreases as the data set increases when

compared with the serial code. Thus we can increase the

performance of a system by using parallel programming

model.

REFERENCES

[1]. K.E. Batcher (1968)- Sorting networks and their

applications, Proceedings of the AFIPS Spring Joint Computer

Conference 32, 307–314

[2]. Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms, Second

Edition. MIT Press and McGraw-Hill, 1990. ISBN 0-262-
03293-7. Chapter 27: Sorting Networks, pp.704–724S

[3]. Roel Wieringa (December 1998) - A Survey of Structured

and Object-Oriented Software Specification Methods and

Techniques, ACM Computing Surveys, 30(4):459-527,.

[4] O.Angel, A.E. Holroyd, D. Romik, B. Virag (2007)-

Random Sorting Networks, Adv. in Math., 215(2):839–868,

[5]. D.E. Knuth. The Art of Computer Programming, Volume

3: Sorting and Searching, Third Edition. Addison-Wesley,

1997. ISBN 0-201-89685-0. Section 5.3.4: Networks for

Sorting, pp. 219–247.

[6]. Ajtai, M.; Komlós, J.; Szemerédi, E. (1983), "An O(n log

n) sorting network", Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, pp. 1–9,

doi:10.1145/800061.808726 .

